Chapter 13: Problem 15
Verify that the vector field is conservative. \(\mathbf{F}(x, y)=12 x y \mathbf{i}+6\left(x^{2}+y\right) \mathbf{j}\)
Chapter 13: Problem 15
Verify that the vector field is conservative. \(\mathbf{F}(x, y)=12 x y \mathbf{i}+6\left(x^{2}+y\right) \mathbf{j}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeProve the property for vector fields \(\mathbf{F}\) and \(\mathbf{G}\) and scalar function \(f .\) (Assume that the required partial derivatives are continuous.) $$ \operatorname{curl}(\mathbf{F}+\mathbf{G})=\operatorname{curl} \mathbf{F}+\operatorname{curl} \mathbf{G} $$
Find the area of the lateral surface (see figure) over the curve \(C\) in the \(x y\) -plane and under the surface \(z=f(x, y),\) where Lateral surface area \(=\int_{C} f(x, y) d s\) \(f(x, y)=y, \quad C:\) line from (0,0) to (4,4)
Find the total mass of the wire with density \(\boldsymbol{\rho}\). \(\mathbf{r}(t)=2 \cos t \mathbf{i}+2 \sin t \mathbf{j}+3 t \mathbf{k}, \quad \rho(x, y, z)=k+z\) \((k>0), \quad 0 \leq t \leq 2 \pi\)
Evaluate \(\int_{C}(x+4 \sqrt{y}) d s\) along the given path. \(C:\) line from (0,0) to (3,9)
Find \(\operatorname{div}(\mathbf{F} \times \mathbf{G})\) $$ \begin{array}{l} \mathbf{F}(x, y, z)=\mathbf{i}+2 x \mathbf{j}+3 y \mathbf{k} \\ \mathbf{G}(x, y, z)=x \mathbf{i}-y \mathbf{j}+z \mathbf{k} \end{array} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.