Chapter 13: Problem 14
Find the gradient vector field for the scalar function. (That is, find the conservative vector field for the potential function.) $$ g(x, y, z)=x \arcsin y z $$
Chapter 13: Problem 14
Find the gradient vector field for the scalar function. (That is, find the conservative vector field for the potential function.) $$ g(x, y, z)=x \arcsin y z $$
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate \(\int_{C} \mathbf{F} \cdot d \mathbf{r}\) for each curve. Discuss the orientation of the curve and its effect on the value of the integral. \(\mathbf{F}(x, y)=x^{2} y \mathbf{i}+x y^{3 / 2} \mathbf{j}\) (a) \(\mathbf{r}_{1}(t)=(t+1) \mathbf{i}+t^{2} \mathbf{j}, \quad 0 \leq t \leq 2\) (b) \(\mathbf{r}_{2}(t)=(1+2 \cos t) \mathbf{i}+\left(4 \cos ^{2} t\right) \mathbf{j}, \quad 0 \leq t \leq \pi / 2\)
Find the total mass of the wire with density \(\boldsymbol{\rho}\). \(\mathbf{r}(t)=t^{2} \mathbf{i}+2 t \mathbf{j}+t \mathbf{k}, \quad \rho(x, y, z)=k z \quad(k>0), \quad 1 \leq t \leq 3\)
Prove the property for vector fields \(\mathbf{F}\) and \(\mathbf{G}\) and scalar function \(f .\) (Assume that the required partial derivatives are continuous.) $$ \nabla \times(f \mathbf{F})=f(\nabla \times \mathbf{F})+(\nabla f) \times \mathbf{F} $$
Evaluate \(\int_{C}(x+4 \sqrt{y}) d s\) along the given path. \(C:\) line from (0,0) to (3,9)
Consider a wire of density \(\rho(x, y)\) given by the space curve \(C: \mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}, \quad a \leq t \leq b\) The moments of inertia about the \(x\) - and \(y\) -axes are given by \(I_{x}=\int_{C} y^{2} \rho(x, y) d s\) and \(I_{y}=\int_{C} x^{2} \rho(x, y) d s\) Find the moments of inertia for the wire of density \(\boldsymbol{\rho}\). A wire lies along \(\mathbf{r}(t)=a \cos t \mathbf{i}+a \sin t \mathbf{j}, 0 \leq t \leq 2 \pi\) and \(a>0,\) with density \(\rho(x, y)=y\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.