Chapter 13: Problem 11
Evaluate \(\int_{C}\left(x^{2}+y^{2}\right) d s\) \(C:\) counterclockwise around the circle \(x^{2}+y^{2}=1\) from (1,0) to (0,1)
Chapter 13: Problem 11
Evaluate \(\int_{C}\left(x^{2}+y^{2}\right) d s\) \(C:\) counterclockwise around the circle \(x^{2}+y^{2}=1\) from (1,0) to (0,1)
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the line integral along the given path. \(\int_{C}\left(x^{2}+y^{2}+z^{2}\right) d s\) $$ \begin{array}{c}C: \mathbf{r}(t)=\sin t \mathbf{i}+\cos t \mathbf{j}+8 t \mathbf{k} \\ 0 \leq t \leq \pi / 2\end{array} $$
Find the work done by a person weighing 150 pounds walking exactly one revolution up a circular helical staircase of radius 3 feet if the person rises 10 feet.
Use a computer algebra system to evaluate the integral \(\int_{C} \mathbf{F} \cdot d \mathbf{r}\) where \(C\) is represented by \(\mathbf{r}(t)\) \(\mathbf{F}(x, y, z)=\frac{x \mathbf{i}+y \mathbf{j}+z \mathbf{k}}{\sqrt{x^{2}+y^{2}+z^{2}}}\) \(C: \mathbf{r}(t)=t \mathbf{i}+t \mathbf{j}+e^{t} \mathbf{k}, \quad 0 \leq t \leq 2\)
In Exercises 47 and \(48,\) evaluate the line integral along the path \(C\) given by \(x=2 t, y=10 t,\) where \(0 \leq t \leq 1\) \(\int_{C}\left(x+3 y^{2}\right) d y\)
Evaluate \(\int_{C} \mathbf{F} \cdot d \mathbf{r}\) where \(C\) is represented by \(\mathbf{r}(t)\) \(\mathbf{F}(x, y, z)=x^{2} y \mathbf{i}+(x-z) \mathbf{j}+x y z \mathbf{k}\) \(\quad C: \mathbf{r}(t)=t \mathbf{i}+t^{2} \mathbf{j}+2 \mathbf{k}, \quad 0 \leq t \leq 1\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.