Chapter 12: Problem 9
In Exercises \(1-10\), evaluate the integral. $$ \int_{0}^{x^{3}} y e^{-y / x} d y $$
Chapter 12: Problem 9
In Exercises \(1-10\), evaluate the integral. $$ \int_{0}^{x^{3}} y e^{-y / x} d y $$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises \(43-50\), sketch the region \(R\) whose area is given by the iterated integral. Then switch the order of integration and show that both orders yield the same area. $$ \int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} d y d x $$
Use cylindrical coordinates to verify the given formula for the moment of inertia of the solid of uniform density. Right circular cylinder: \(I_{z}=\frac{3}{2} m a^{2}\) \(r=2 a \sin \theta, \quad 0 \leq z \leq h\) Use a computer algebra system to evaluate the triple integral.
In Exercises \(11-22,\) evaluate the iterated integral. $$ \int_{0}^{\pi / 2} \int_{0}^{\sin \theta} \theta r d r d \theta $$
In Exercises \(1-10\), evaluate the integral. $$ \int_{e^{y}}^{y} \frac{y \ln x}{x} d x, \quad y>0 $$
Use spherical coordinates to find the volume of the solid. The solid between the spheres \(x^{2}+y^{2}+z^{2}=a^{2}\) and \(x^{2}+y^{2}+z^{2}=b^{2}, b>a,\) and inside the cone \(z^{2}=x^{2}+y^{2}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.