Chapter 12: Problem 41
In Exercises \(37-42,\) sketch the region \(R\) of integration and switch the order of integration. $$ \int_{-1}^{1} \int_{x^{2}}^{1} f(x, y) d y d x $$
Chapter 12: Problem 41
In Exercises \(37-42,\) sketch the region \(R\) of integration and switch the order of integration. $$ \int_{-1}^{1} \int_{x^{2}}^{1} f(x, y) d y d x $$
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the mass and center of mass of the lamina bounded by the graphs of the equations for the given density or densities. (Hint: Some of the integrals are simpler in polar coordinates.) $$ y=\sqrt{a^{2}-x^{2}}, y=0, y=x, \rho=k \sqrt{x^{2}+y^{2}} $$
In Exercises \(51-54,\) evaluate the iterated integral. (Note that it is necessary to switch the order of integration.) $$ \int_{0}^{2} \int_{x}^{2} e^{-y^{2}} d y d x $$
Find \(I_{x}, I_{y}, I_{0}, \overline{\bar{x}},\) and \(\overline{\bar{y}}\) for the lamina bounded by the graphs of the equations. Use a computer algebra system to evaluate the double integrals. $$ y=\sqrt{x}, y=0, x=4, \rho=k x y $$
Approximation \(\quad\) In Exercises 39 and \(40,\) use a computer algebra system to approximate the iterated integral. $$ \int_{\pi / 4}^{\pi / 2} \int_{0}^{5} r \sqrt{1+r^{3}} \sin \sqrt{\theta} d r d \theta $$
In Exercises \(31-36,\) use an iterated integral to find the area of the region bounded by the graphs of the equations. $$ y=x^{3 / 2}, \quad y=2 x $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.