Chapter 12: Problem 36
In Exercises \(31-36,\) use an iterated integral to find the area of the region bounded by the graphs of the equations. $$ y=x, \quad y=2 x, \quad x=2 $$
Chapter 12: Problem 36
In Exercises \(31-36,\) use an iterated integral to find the area of the region bounded by the graphs of the equations. $$ y=x, \quad y=2 x, \quad x=2 $$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises \(31-36,\) use an iterated integral to find the area of the region bounded by the graphs of the equations. $$ \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 $$
In Exercises \(59-62,\) use a computer algebra system to approximate the iterated integral. $$ \int_{0}^{2} \int_{0}^{4-x^{2}} e^{x y} d y d x $$
In your own words, describe \(r\) -simple regions and \(\theta\) -simple regions.
In Exercises \(43-50\), sketch the region \(R\) whose area is given by the iterated integral. Then switch the order of integration and show that both orders yield the same area. $$ \int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} d y d x $$
Use spherical coordinates to show that $$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sqrt{x^{2}+y^{2}+z^{2}} e^{-\left(x^{2}+y^{2}+z^{2}\right)} d x d y d z=2 \pi$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.