Chapter 12: Problem 30
Use spherical coordinates to show that $$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sqrt{x^{2}+y^{2}+z^{2}} e^{-\left(x^{2}+y^{2}+z^{2}\right)} d x d y d z=2 \pi$$
Chapter 12: Problem 30
Use spherical coordinates to show that $$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sqrt{x^{2}+y^{2}+z^{2}} e^{-\left(x^{2}+y^{2}+z^{2}\right)} d x d y d z=2 \pi$$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises \(51-54,\) evaluate the iterated integral. (Note that it is necessary to switch the order of integration.) $$ \int_{0}^{2} \int_{x}^{2} x \sqrt{1+y^{3}} d y d x $$
In Exercises \(11-22,\) evaluate the iterated integral. $$ \int_{0}^{\pi / 2} \int_{0}^{2 \cos \theta} r d r d \theta $$
Show that the volume of a spherical block can be approximated by \(\Delta V \approx \rho^{2} \sin \phi \Delta \rho \Delta \phi \Delta \theta\).
In Exercises 23-26, evaluate the improper iterated integral. $$ \int_{1}^{\infty} \int_{0}^{1 / x} y d y d x $$
In Exercises \(11-22,\) evaluate the iterated integral. $$ \int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}}(x+y) d x d y $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.