Chapter 12: Problem 30
Use a double integral in polar coordinates to find the volume of a sphere of radius \(a\).
Chapter 12: Problem 30
Use a double integral in polar coordinates to find the volume of a sphere of radius \(a\).
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the mass and center of mass of the lamina bounded by the graphs of the equations for the given density or densities. (Hint: Some of the integrals are simpler in polar coordinates.) $$ y=\sin \frac{\pi x}{L}, y=0, x=0, x=L, \rho=k y $$
In Exercises 23-26, evaluate the improper iterated integral. $$ \int_{0}^{\infty} \int_{0}^{\infty} x y e^{-\left(x^{2}+y^{2}\right)} d x d y $$
In Exercises \(11-22,\) evaluate the iterated integral. $$ \int_{0}^{2} \int_{y}^{2 y}\left(10+2 x^{2}+2 y^{2}\right) d x d y $$
In Exercises \(11-22,\) evaluate the iterated integral. $$ \int_{0}^{\pi / 2} \int_{0}^{2 \cos \theta} r d r d \theta $$
Find \(I_{x}, I_{y}, I_{0}, \overline{\bar{x}},\) and \(\overline{\bar{y}}\) for the lamina bounded by the graphs of the equations. Use a computer algebra system to evaluate the double integrals. $$ y=0, y=b, x=0, x=a, \rho=k y $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.