Chapter 12: Problem 22
Use spherical coordinates to find the volume of the solid. The solid between the spheres \(x^{2}+y^{2}+z^{2}=a^{2}\) and \(x^{2}+y^{2}+z^{2}=b^{2}, b>a,\) and inside the cone \(z^{2}=x^{2}+y^{2}\)
Chapter 12: Problem 22
Use spherical coordinates to find the volume of the solid. The solid between the spheres \(x^{2}+y^{2}+z^{2}=a^{2}\) and \(x^{2}+y^{2}+z^{2}=b^{2}, b>a,\) and inside the cone \(z^{2}=x^{2}+y^{2}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeApproximation \(\quad\) In Exercises 41 and 42, determine which value best approximates the volume of the solid between the \(x y\) -plane and the function over the region. (Make your selection on the basis of a sketch of the solid and not by performing any calculations.) \(f(x, y)=15-2 y ; R:\) semicircle: \(x^{2}+y^{2}=16, y \geq 0\) (a) 100 (b) 200 (c) 300 (d) -200 (e) 800
In Exercises \(51-54,\) evaluate the iterated integral. (Note that it is necessary to switch the order of integration.) $$ \int_{0}^{1} \int_{y}^{1} \sin x^{2} d x d y $$
In Exercises \(11-22,\) evaluate the iterated integral. $$ \int_{-1}^{1} \int_{-2}^{2}\left(x^{2}-y^{2}\right) d y d x $$
In Exercises \(11-22,\) evaluate the iterated integral. $$ \int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}}(x+y) d x d y $$
In Exercises \(11-22,\) evaluate the iterated integral. $$ \int_{0}^{2} \int_{0}^{\sqrt{4-y^{2}}} \frac{2}{\sqrt{4-y^{2}}} d x d y $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.