Chapter 12: Problem 10
Use cylindrical coordinates to find the volume of the solid. Solid inside \(x^{2}+y^{2}+z^{2}=16\) and outside \(z=\sqrt{x^{2}+y^{2}}\)
Chapter 12: Problem 10
Use cylindrical coordinates to find the volume of the solid. Solid inside \(x^{2}+y^{2}+z^{2}=16\) and outside \(z=\sqrt{x^{2}+y^{2}}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises \(37-42,\) sketch the region \(R\) of integration and switch the order of integration. $$ \int_{-\pi / 2}^{\pi / 2} \int_{0}^{\cos x} f(x, y) d y d x $$
In Exercises \(1-10\), evaluate the integral. $$ \int_{y}^{\pi / 2} \sin ^{3} x \cos y d x $$
Find the mass of the lamina described by the inequalities, given that its density is \(\rho(x, y)=x y .\) (Hint: Some of the integrals are simpler in polar coordinates.) $$ x \geq 0,0 \leq y \leq \sqrt{4-x^{2}} $$
In Exercises 57 and \(58,\) (a) sketch the region of integration, (b) switch the order of integration, and (c) use a computer algebra system to show that both orders yield the same value. $$ \int_{0}^{2} \int_{\sqrt{4-x^{2}}}^{4-x^{2} / 4} \frac{x y}{x^{2}+y^{2}+1} d y d x $$
Find the mass and center of mass of the lamina bounded by the graphs of the equations for the given density or densities. (Hint: Some of the integrals are simpler in polar coordinates.) $$ y=9-x^{2}, y=0, \rho=k y^{2} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.