Chapter 11: Problem 74
If \(f(x, y)=0,\) give the rule for finding \(d y / d x\) implicitly. If \(f(x, y, z)=0,\) give the rule for finding \(\partial z / \partial x\) and \(\partial z / \partial y\) implicitly.
Chapter 11: Problem 74
If \(f(x, y)=0,\) give the rule for finding \(d y / d x\) implicitly. If \(f(x, y, z)=0,\) give the rule for finding \(\partial z / \partial x\) and \(\partial z / \partial y\) implicitly.
All the tools & learning materials you need for study success - in one app.
Get started for freeShow that the function is differentiable by finding values for \(\varepsilon_{1}\) and \(\varepsilon_{2}\) as designated in the definition of differentiability, and verify that both \(\varepsilon_{1}\) and \(\varepsilon_{2} \rightarrow 0\) as \((\boldsymbol{\Delta x}, \boldsymbol{\Delta} \boldsymbol{y}) \rightarrow(\mathbf{0}, \mathbf{0})\) \(f(x, y)=x^{2} y\)
Use the gradient to find a unit normal vector to the graph of the equation at the given point. Sketch your results $$ x e^{y}-y=5,(5,0) $$
Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. If \(D_{\mathbf{u}} f(x, y)\) exists, then \(D_{\mathbf{u}} f(x, y)=-D_{-\mathbf{u}} f(x, y)\)
The function \(f\) is homogeneous of degree \(n\) if \(f(t x, t y)=t^{n} f(x, y) .\) Determine the degree of the homogeneous function, and show that \(x f_{x}(x, y)+y f_{y}(x, y)=n f(x, y)\) \(f(x, y)=\frac{x^{2}}{\sqrt{x^{2}+y^{2}}}\)
Use the function $$f(x, y)=3-\frac{x}{3}-\frac{y}{2}$$ Find the maximum value of the directional derivative at (3,2) .
What do you think about this solution?
We value your feedback to improve our textbook solutions.