Chapter 11: Problem 66
State the definition of continuity of a function of two variables.
Chapter 11: Problem 66
State the definition of continuity of a function of two variables.
All the tools & learning materials you need for study success - in one app.
Get started for freeAcceleration The centripetal acceleration of a particle moving in a circle is \(a=v^{2} / r,\) where \(v\) is the velocity and \(r\) is the radius of the circle. Approximate the maximum percent error in measuring the acceleration due to errors of \(3 \%\) in \(v\) and \(2 \%\) in \(r\)
Area Let \(\theta\) be the angle between equal sides of an isosceles triangle and let \(x\) be the length of these sides. \(x\) is increasing at \(\frac{1}{2}\) meter per hour and \(\theta\) is increasing at \(\pi / 90\) radian per hour. Find the rate of increase of the area when \(x=6\) and \(\theta=\pi / 4\).
Use the function $$f(x, y)=3-\frac{x}{3}-\frac{y}{2}$$ Find the maximum value of the directional derivative at (3,2) .
Show that the function is differentiable by finding values for \(\varepsilon_{1}\) and \(\varepsilon_{2}\) as designated in the definition of differentiability, and verify that both \(\varepsilon_{1}\) and \(\varepsilon_{2} \rightarrow 0\) as \((\boldsymbol{\Delta x}, \boldsymbol{\Delta} \boldsymbol{y}) \rightarrow(\mathbf{0}, \mathbf{0})\) \(f(x, y)=x^{2} y\)
Area \(\quad\) A triangle is measured and two adjacent sides are found to be 3 inches and 4 inches long, with an included angle of \(\pi / 4\) The possible errors in measurement are \(\frac{1}{16}\) inch for the sides and 0.02 radian for the angle. Approximate the maximum possible error in the computation of the area.
What do you think about this solution?
We value your feedback to improve our textbook solutions.