Chapter 11: Problem 61
Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. If \(D_{\mathbf{u}} f(x, y)\) exists, then \(D_{\mathbf{u}} f(x, y)=-D_{-\mathbf{u}} f(x, y)\)
Chapter 11: Problem 61
Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. If \(D_{\mathbf{u}} f(x, y)\) exists, then \(D_{\mathbf{u}} f(x, y)=-D_{-\mathbf{u}} f(x, y)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFind \(\partial w / \partial r\) and \(\partial w / \partial \theta\) (a) using the appropriate Chain Rule and (b) by converting \(w\) to a function of \(r\) and \(\boldsymbol{\theta}\) before differentiating. \(w=\frac{y z}{x}, \quad x=\theta^{2}, \quad y=r+\theta, \quad z=r-\theta\)
Find \(d^{2} w / d t^{2}\) using the appropriate Chain Rule. Evaluate \(d^{2} w / d t^{2}\) at the given value of \(t\) \(w=\frac{x^{2}}{y}, \quad x=t^{2}, \quad y=t+1, \quad t=1\)
What is meant by a linear approximation of \(z=f(x, y)\) at the point \(P\left(x_{0}, y_{0}\right) ?\)
The surface of a mountain is modeled by the equation \(h(x, y)=5000-0.001 x^{2}-0.004 y^{2}\). A mountain climber is at the point (500,300,4390) . In what direction should the climber move in order to ascend at the greatest rate?
Find \(\partial w / \partial r\) and \(\partial w / \partial \theta\) (a) using the appropriate Chain Rule and (b) by converting \(w\) to a function of \(r\) and \(\boldsymbol{\theta}\) before differentiating. \(w=\sqrt{25-5 x^{2}-5 y^{2}}, x=r \cos \theta, \quad y=r \sin \theta\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.