Chapter 11: Problem 60
Differentiate implicitly to find the first partial derivatives of \(w\). \(x^{2}+y^{2}+z^{2}-5 y w+10 w^{2}=2\)
Chapter 11: Problem 60
Differentiate implicitly to find the first partial derivatives of \(w\). \(x^{2}+y^{2}+z^{2}-5 y w+10 w^{2}=2\)
All the tools & learning materials you need for study success - in one app.
Get started for freeResistance \(\quad\) The total resistance \(R\) of two resistors connected in parallel is \(\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}\) Approximate the change in \(R\) as \(R_{1}\) is increased from 10 ohms to 10.5 ohms and \(R_{2}\) is decreased from 15 ohms to 13 ohms.
Use the gradient to find a unit normal vector to the graph of the equation at the given point. Sketch your results $$ 9 x^{2}+4 y^{2}=40,(2,-1) $$
Use the function $$f(x, y)=3-\frac{x}{3}-\frac{y}{2}$$ Find a unit vector \(\mathbf{u}\) orthogonal to \(\nabla f(3,2)\) and calculate \(D_{\mathbf{u}} f(3,2) .\) Discuss the geometric meaning of the result.
Inductance \(\quad\) The inductance \(L\) (in microhenrys) of a straight nonmagnetic wire in free space is \(L=0.00021\left(\ln \frac{2 h}{r}-0.75\right)\) where \(h\) is the length of the wire in millimeters and \(r\) is the radius of a circular cross section. Approximate \(L\) when \(r=2 \pm \frac{1}{16}\) millimeters and \(h=100 \pm \frac{1}{100}\) millimeters.
Differentiate implicitly to find the first partial derivatives of \(w\). \(w-\sqrt{x-y}-\sqrt{y-z}=0\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.