Chapter 11: Problem 44
Find a normal vector to the level curve \(f(x, y)=c\) at \(P.\) $$ \begin{array}{l} f(x, y)=6-2 x-3 y \\ c=6, \quad P(0,0) \end{array} $$
Chapter 11: Problem 44
Find a normal vector to the level curve \(f(x, y)=c\) at \(P.\) $$ \begin{array}{l} f(x, y)=6-2 x-3 y \\ c=6, \quad P(0,0) \end{array} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeFind \(\partial w / \partial s\) and \(\partial w / \partial t\) by using the appropriate Chain Rule. \(w=x^{2}+y^{2}+z^{2}, \quad x=t \sin s, \quad y=t \cos s, \quad z=s t^{2}\)
Area \(\quad\) A triangle is measured and two adjacent sides are found to be 3 inches and 4 inches long, with an included angle of \(\pi / 4\) The possible errors in measurement are \(\frac{1}{16}\) inch for the sides and 0.02 radian for the angle. Approximate the maximum possible error in the computation of the area.
In Exercises 59-62, differentiate implicitly to find the first partial derivatives of \(w\). \(x y z+x z w-y z w+w^{2}=5\)
Define the derivative of the function \(z=f(x, y)\) in the direction \(\mathbf{u}=\cos \theta \mathbf{i}+\sin \theta \mathbf{j}\).
Find \(d w / d t\) (a) using the appropriate Chain Rule and (b) by converting \(w\) to a function of \(t\) before differentiating. \(w=x^{2}+y^{2}+z^{2}, \quad x=e^{t} \cos t, \quad y=e^{t} \sin t, \quad z=e^{t}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.