Chapter 11: Problem 31
Use the function $$f(x, y)=3-\frac{x}{3}-\frac{y}{2}$$ Find the maximum value of the directional derivative at (3,2) .
Chapter 11: Problem 31
Use the function $$f(x, y)=3-\frac{x}{3}-\frac{y}{2}$$ Find the maximum value of the directional derivative at (3,2) .
All the tools & learning materials you need for study success - in one app.
Get started for freeArea Let \(\theta\) be the angle between equal sides of an isosceles triangle and let \(x\) be the length of these sides. \(x\) is increasing at \(\frac{1}{2}\) meter per hour and \(\theta\) is increasing at \(\pi / 90\) radian per hour. Find the rate of increase of the area when \(x=6\) and \(\theta=\pi / 4\).
In Exercises \(43-46,\) find \(\partial w / \partial s\) and \(\partial w / \partial t\) by using the appropriate Chain Rule. \(w=x y z, \quad x=s+t, \quad y=s-t, \quad z=s t^{2}\)
What is meant by a linear approximation of \(z=f(x, y)\) at the point \(P\left(x_{0}, y_{0}\right) ?\)
Heat-Seeking Path In Exercises 57 and \(58,\) find the path of a heat-seeking particle placed at point \(P\) on a metal plate with a temperature field \(T(x, y)\). $$ T(x, y)=400-2 x^{2}-y^{2}, \quad P(10,10) $$
Moment of Inertia An annular cylinder has an inside radius of \(r_{1}\) and an outside radius of \(r_{2}\) (see figure). Its moment of inertia is \(I=\frac{1}{2} m\left(r_{1}^{2}+r_{2}^{2}\right)\) where \(m\) is the mass. The two radii are increasing at a rate of 2 centimeters per second. Find the rate at which \(I\) is changing at the instant the radii are 6 centimeters and 8 centimeters. (Assume mass is a constant.)
What do you think about this solution?
We value your feedback to improve our textbook solutions.