Chapter 11: Problem 30
Find \(d w / d t\) (a) using the appropriate Chain Rule and (b) by converting \(w\) to a function of \(t\) before differentiating. \(w=x y z, \quad x=t^{2}, \quad y=2 t, \quad z=e^{-t}\)
Chapter 11: Problem 30
Find \(d w / d t\) (a) using the appropriate Chain Rule and (b) by converting \(w\) to a function of \(t\) before differentiating. \(w=x y z, \quad x=t^{2}, \quad y=2 t, \quad z=e^{-t}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeShow that \(\frac{\partial w}{\partial u}+\frac{\partial w}{\partial v}=0\) for \(w=f(x, y), x=u-v,\) and \(y=v-u\)
In Exercises 27-32, use the function $$f(x, y)=3-\frac{x}{3}-\frac{y}{2}$$ Sketch the graph of \(f\) in the first octant and plot the point (3,2,1) on the surface.
Differentiate implicitly to find \(d y / d x\). \(\frac{x}{x^{2}+y^{2}}-y^{2}=6\)
Find \(\partial w / \partial r\) and \(\partial w / \partial \theta\) (a) using the appropriate Chain Rule and (b) by converting \(w\) to a function of \(r\) and \(\boldsymbol{\theta}\) before differentiating. \(w=\arctan \frac{y}{x}, \quad x=r \cos \theta, \quad y=r \sin \theta\)
Show that the function is differentiable by finding values for \(\varepsilon_{1}\) and \(\varepsilon_{2}\) as designated in the definition of differentiability, and verify that both \(\varepsilon_{1}\) and \(\varepsilon_{2} \rightarrow 0\) as \((\boldsymbol{\Delta x}, \boldsymbol{\Delta} \boldsymbol{y}) \rightarrow(\mathbf{0}, \mathbf{0})\) \(f(x, y)=x^{2} y\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.