Chapter 11: Problem 27
Find \(d w / d t\) (a) using the appropriate Chain Rule and (b) by converting \(w\) to a function of \(t\) before differentiating. \(w=x^{2}+y^{2}+z^{2}, \quad x=e^{t} \cos t, \quad y=e^{t} \sin t, \quad z=e^{t}\)
Chapter 11: Problem 27
Find \(d w / d t\) (a) using the appropriate Chain Rule and (b) by converting \(w\) to a function of \(t\) before differentiating. \(w=x^{2}+y^{2}+z^{2}, \quad x=e^{t} \cos t, \quad y=e^{t} \sin t, \quad z=e^{t}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises \(83-86,\) show that the function is differentiable by finding values for \(\varepsilon_{1}\) and \(\varepsilon_{2}\) as designated in the definition of differentiability, and verify that both \(\varepsilon_{1}\) and \(\varepsilon_{2} \rightarrow 0\) as \((\boldsymbol{\Delta x}, \boldsymbol{\Delta} \boldsymbol{y}) \rightarrow(\mathbf{0}, \mathbf{0})\) \(f(x, y)=x^{2}-2 x+y\)
When using differentials, what is meant by the terms propagated error and relative error?
Ideal Gas Law The Ideal Gas Law is \(p V=m R T,\) where \(R\) is a constant, \(m\) is a constant mass, and \(p\) and \(V\) are functions of time. Find \(d T / d t,\) the rate at which the temperature changes with respect to time.
Find \(\partial w / \partial r\) and \(\partial w / \partial \theta\) (a) using the appropriate Chain Rule and (b) by converting \(w\) to a function of \(r\) and \(\boldsymbol{\theta}\) before differentiating. \(w=\frac{y z}{x}, \quad x=\theta^{2}, \quad y=r+\theta, \quad z=r-\theta\)
Inductance \(\quad\) The inductance \(L\) (in microhenrys) of a straight nonmagnetic wire in free space is \(L=0.00021\left(\ln \frac{2 h}{r}-0.75\right)\) where \(h\) is the length of the wire in millimeters and \(r\) is the radius of a circular cross section. Approximate \(L\) when \(r=2 \pm \frac{1}{16}\) millimeters and \(h=100 \pm \frac{1}{100}\) millimeters.
What do you think about this solution?
We value your feedback to improve our textbook solutions.