Chapter 11: Problem 25
Find an equation of the tangent plane and find symmetric equations of the normal line to the surface at the given point. $$ x y-z=0, \quad(-2,-3,6) $$
Chapter 11: Problem 25
Find an equation of the tangent plane and find symmetric equations of the normal line to the surface at the given point. $$ x y-z=0, \quad(-2,-3,6) $$
All the tools & learning materials you need for study success - in one app.
Get started for freeShow that \(\frac{\partial w}{\partial u}+\frac{\partial w}{\partial v}=0\) for \(w=f(x, y), x=u-v,\) and \(y=v-u\)
In Exercises 31 and 32, the parametric equations for the paths of two projectiles are given. At what rate is the distance between the two objects changing at the given value of \(t ?\) \(x_{1}=10 \cos 2 t, y_{1}=6 \sin 2 t\) \(x_{2}=7 \cos t, y_{2}=4 \sin t\) \(t=\pi / 2\)
The surface of a mountain is modeled by the equation \(h(x, y)=5000-0.001 x^{2}-0.004 y^{2}\). A mountain climber is at the point (500,300,4390) . In what direction should the climber move in order to ascend at the greatest rate?
Find \(\partial w / \partial s\) and \(\partial w / \partial t\) using the appropriate Chain Rule, and evaluate each partial derivative at the given values of \(s\) and \(t\) $$ \begin{array}{l} \text { Function } \\ \hline w=x^{2}-y^{2} \\ x=s \cos t, \quad y=s \sin t \end{array} $$ $$ \frac{\text { Point }}{s=3, \quad t=\frac{\pi}{4}} $$
Volume and Surface Area The radius of a right circular cylinder is increasing at a rate of 6 inches per minute, and the height is decreasing at a rate of 4 inches per minute. What are the rates of change of the volume and surface area when the radius is 12 inches and the height is 36 inches?
What do you think about this solution?
We value your feedback to improve our textbook solutions.