Chapter 11: Problem 20
Describe the domain and range of the function. $$ f(x, y)=\arccos (y / x) $$
Chapter 11: Problem 20
Describe the domain and range of the function. $$ f(x, y)=\arccos (y / x) $$
All the tools & learning materials you need for study success - in one app.
Get started for freeShow that the function is differentiable by finding values for \(\varepsilon_{1}\) and \(\varepsilon_{2}\) as designated in the definition of differentiability, and verify that both \(\varepsilon_{1}\) and \(\varepsilon_{2} \rightarrow 0\) as \((\boldsymbol{\Delta x}, \boldsymbol{\Delta} \boldsymbol{y}) \rightarrow(\mathbf{0}, \mathbf{0})\) \(f(x, y)=x^{2} y\)
Consider the function \(w=f(x, y),\) where \(x=r \cos \theta\) and \(y=r \sin \theta .\) Prove each of the following. (a) \(\frac{\partial w}{\partial x}=\frac{\partial w}{\partial r} \cos \theta-\frac{\partial w}{\partial \theta} \frac{\sin \theta}{r}\) \(\frac{\partial w}{\partial y}=\frac{\partial w}{\partial r} \sin \theta+\frac{\partial w}{\partial \theta} \frac{\cos \theta}{r}\) (b) \(\left(\frac{\partial w}{\partial x}\right)^{2}+\left(\frac{\partial w}{\partial y}\right)^{2}=\left(\frac{\partial w}{\partial r}\right)^{2}+\left(\frac{1}{r^{2}}\right)\left(\frac{\partial w}{\partial \theta}\right)^{2}\)
Find \(\partial w / \partial r\) and \(\partial w / \partial \theta\) (a) using the appropriate Chain Rule and (b) by converting \(w\) to a function of \(r\) and \(\boldsymbol{\theta}\) before differentiating. \(w=\arctan \frac{y}{x}, \quad x=r \cos \theta, \quad y=r \sin \theta\)
Ideal Gas Law The Ideal Gas Law is \(p V=m R T,\) where \(R\) is a constant, \(m\) is a constant mass, and \(p\) and \(V\) are functions of time. Find \(d T / d t,\) the rate at which the temperature changes with respect to time.
Use the gradient to find a unit normal vector to the graph of the equation at the given point. Sketch your results $$ x e^{y}-y=5,(5,0) $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.