Chapter 10: Problem 83
Prove Kepler's Second Law: Each ray from the sun to a planet sweeps out equal areas of the ellipse in equal times.
Chapter 10: Problem 83
Prove Kepler's Second Law: Each ray from the sun to a planet sweeps out equal areas of the ellipse in equal times.
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises \(43-48,\) find the indefinite integral. $$ \int(2 t \mathbf{i}+\mathbf{j}+\mathbf{k}) d t $$
Prove the property. In each case, assume that \(\mathbf{r}, \mathbf{u},\) and \(\mathbf{v}\) are differentiable vector-valued functions of \(t,\) \(f\) is a differentiable real-valued function of \(t,\) and \(c\) is a scalar. $$ D_{t}\left[\mathbf{r}(t) \times \mathbf{r}^{\prime}(t)\right]=\mathbf{r}(t) \times \mathbf{r}^{\prime \prime}(t) $$
Use the model for projectile motion, assuming there is no air resistance. A projectile is fired from ground level at an angle of \(12^{\circ}\) with the horizontal. The projectile is to have a range of 150 feet. Find the minimum initial velocity necessary.
The position vector \(r\) describes the path of an object moving in the \(x y\) -plane. Sketch a graph of the path and sketch the velocity and acceleration vectors at the given point. $$ \mathbf{r}(t)=3 t \mathbf{i}+(t-1) \mathbf{j},(3,0) $$
Find \(\mathbf{r}(t)\) for the given conditions. $$ \mathbf{r}^{\prime \prime}(t)=-4 \cos t \mathbf{j}-3 \sin t \mathbf{k}, \quad \mathbf{r}^{\prime}(0)=3 \mathbf{k}, \quad \mathbf{r}(0)=4 \mathbf{j} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.