Chapter 10: Problem 64
If \(\mathbf{r}(t)\) is a vector-valued function, is the graph of the vectorvalued function \(\mathbf{u}(t)=\mathbf{r}(t-2)\) a horizontal translation of the graph of \(\mathbf{r}(t) ?\) Explain your reasoning.
Chapter 10: Problem 64
If \(\mathbf{r}(t)\) is a vector-valued function, is the graph of the vectorvalued function \(\mathbf{u}(t)=\mathbf{r}(t-2)\) a horizontal translation of the graph of \(\mathbf{r}(t) ?\) Explain your reasoning.
All the tools & learning materials you need for study success - in one app.
Get started for freeFind (a) \(\quad D_{t}[\mathbf{r}(t) \cdot \mathbf{u}(t)] \quad\) and (b) \(D_{t}[\mathbf{r}(t) \times \mathbf{u}(t)]\) by differentiating the product, then applying the properties of Theorem 10.2. $$ \mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}+t \mathbf{k}, \quad \mathbf{u}(t)=\mathbf{j}+t \mathbf{k} $$
The position vector \(r\) describes the path of an object moving in space. Find the velocity, speed, and acceleration of the object. $$ \mathbf{r}(t)=t \mathbf{i}+(2 t-5) \mathbf{j}+3 t \mathbf{k} $$
The position vector \(r\) describes the path of an object moving in the \(x y\) -plane. Sketch a graph of the path and sketch the velocity and acceleration vectors at the given point. $$ \mathbf{r}(t)=t^{2} \mathbf{i}+t \mathbf{j},(4,2) $$
Prove the property. In each case, assume that \(\mathbf{r}, \mathbf{u},\) and \(\mathbf{v}\) are differentiable vector-valued functions of \(t,\) \(f\) is a differentiable real-valued function of \(t,\) and \(c\) is a scalar. $$ D_{t}[f(t) \mathbf{r}(t)]=f(t) \mathbf{r}^{\prime}(t)+f^{\prime}(t) \mathbf{r}(t) $$
The position vector \(r\) describes the path of an object moving in the \(x y\) -plane. Sketch a graph of the path and sketch the velocity and acceleration vectors at the given point. $$ \mathbf{r}(t)=3 \cos t \mathbf{i}+2 \sin t \mathbf{j},(3,0) $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.