Chapter 10: Problem 63
State the definition of a vector-valued function in the plane and in space.
Chapter 10: Problem 63
State the definition of a vector-valued function in the plane and in space.
All the tools & learning materials you need for study success - in one app.
Get started for freeUse the definition of the derivative to find \(\mathbf{r}^{\prime}(t)\). $$ \mathbf{r}(t)=\langle 0, \sin t, 4 t\rangle $$
In Exercises 35 and \(36,\) use the properties of the derivative to find the following. (a) \(\mathbf{r}^{\prime}(t)\) (b) \(\mathbf{r}^{\prime \prime}(t)\) (c) \(D_{t}[\mathbf{r}(t) \cdot \mathbf{u}(t)]\) (d) \(D_{t}[3 \mathbf{r}(t)-\mathbf{u}(t)]\) (e) \(D_{t}[\mathbf{r}(t) \times \mathbf{u}(t)]\) (f) \(D_{t}[\|\mathbf{r}(t)\|], \quad t>0\) $$ \mathbf{r}(t)=t \mathbf{i}+3 t \mathbf{j}+t^{2} \mathbf{k}, \quad \mathbf{u}(t)=4 t \mathbf{i}+t^{2} \mathbf{j}+t^{3} \mathbf{k} $$
Find the indefinite integral. $$ \int\left(\ln t \mathbf{i}+\frac{1}{t} \mathbf{j}+\mathbf{k}\right) d t $$
Use the model for projectile motion, assuming there is no air resistance. A baseball, hit 3 feet above the ground, leaves the bat at an angle of \(45^{\circ}\) and is caught by an outfielder 3 feet above the ground and 300 feet from home plate. What is the initial speed of the ball, and how high does it rise?
In Exercises 41 and \(42,\) use the definition of the derivative to find \(\mathbf{r}^{\prime}(t)\). $$ \mathbf{r}(t)=(3 t+2) \mathbf{i}+\left(1-t^{2}\right) \mathbf{j} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.