Chapter 10: Problem 6
Find the unit tangent vector to the curve at the specified value of the parameter. $$ \mathbf{r}(t)=e^{t} \cos t \mathbf{i}+e^{t} \mathbf{j}, \quad t=0 $$
Chapter 10: Problem 6
Find the unit tangent vector to the curve at the specified value of the parameter. $$ \mathbf{r}(t)=e^{t} \cos t \mathbf{i}+e^{t} \mathbf{j}, \quad t=0 $$
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the indefinite integral. $$ \int\left(e^{t} \mathbf{i}+\sin t \mathbf{j}+\cos t \mathbf{k}\right) d t $$
A projectile is launched with an initial velocity of 100 feet per second at a height of 5 feet and at an angle of \(30^{\circ}\) with the horizontal. (a) Determine the vector-valued function for the path of the projectile. (b) Use a graphing utility to graph the path and approximate the maximum height and range of the projectile. (c) Find \(\mathbf{v}(t),\|\mathbf{v}(t)\|,\) and \(\mathbf{a}(t)\) (d) Use a graphing utility to complete the table. $$ \begin{array}{|l|l|l|l|l|l|l|} \hline \boldsymbol{t} & 0.5 & 1.0 & 1.5 & 2.0 & 2.5 & 3.0 \\ \hline \text { Speed } & & & & & & \\ \hline \end{array} $$ (e) Use a graphing utility to graph the scalar functions \(a_{\mathbf{T}}\) and \(a_{\mathrm{N}} .\) How is the speed of the projectile changing when \(a_{\mathrm{T}}\) and \(a_{\mathbf{N}}\) have opposite signs?
True or False? Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. $$ \text { The acceleration of an object is the derivative of the speed. } $$
Consider the motion of a point (or particle) on the circumference of a rolling circle. As the circle rolls, it generates the cycloid \(\mathbf{r}(t)=b(\omega t-\sin \omega t) \mathbf{i}+b(1-\cos \omega t) \mathbf{j}\) where \(\omega\) is the constant angular velocity of the circle and \(b\) is the radius of the circle. Find the maximum speed of a point on the circumference of an automobile tire of radius 1 foot when the automobile is traveling at 55 miles per hour. Compare this speed with the speed of the automobile.
Use the model for projectile motion, assuming there is no air resistance. Find the angle at which an object must be thrown to obtain (a) the maximum range and (b) the maximum height.
What do you think about this solution?
We value your feedback to improve our textbook solutions.