Chapter 10: Problem 58
The \(z\) -component of the derivative of the vector-valued function \(\mathbf{u}\) is 0 for \(t\) in the domain of the function. What does this information imply about the graph of \(\mathbf{u}\) ?
Chapter 10: Problem 58
The \(z\) -component of the derivative of the vector-valued function \(\mathbf{u}\) is 0 for \(t\) in the domain of the function. What does this information imply about the graph of \(\mathbf{u}\) ?
All the tools & learning materials you need for study success - in one app.
Get started for freeThe position vector \(r\) describes the path of an object moving in the \(x y\) -plane. Sketch a graph of the path and sketch the velocity and acceleration vectors at the given point. $$ \mathbf{r}(t)=t^{2} \mathbf{i}+t \mathbf{j},(4,2) $$
True or False? Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. $$ \text { The velocity vector points in the direction of motion. } $$
Use the properties of the derivative to find the following. (a) \(\mathbf{r}^{\prime}(t)\) (b) \(\mathbf{r}^{\prime \prime}(t)\) (c) \(D_{t}[\mathbf{r}(t) \cdot \mathbf{u}(t)]\) (d) \(D_{t}[3 \mathbf{r}(t)-\mathbf{u}(t)]\) (e) \(D_{t}[\mathbf{r}(t) \times \mathbf{u}(t)]\) (f) \(D_{t}[\|\mathbf{r}(t)\|], \quad t>0\) $$ \begin{array}{l} \mathbf{r}(t)=t \mathbf{i}+2 \sin t \mathbf{j}+2 \cos t \mathbf{k} \\ \mathbf{u}(t)=\frac{1}{t} \mathbf{i}+2 \sin t \mathbf{j}+2 \cos t \mathbf{k} \end{array} $$
Use the definition of the derivative to find \(\mathbf{r}^{\prime}(t)\). $$ \mathbf{r}(t)=\langle 0, \sin t, 4 t\rangle $$
Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. Prove that the vector \(\mathbf{T}^{\prime}(t)\) is \(\mathbf{0}\) for an object moving in a straight line.
What do you think about this solution?
We value your feedback to improve our textbook solutions.