Chapter 10: Problem 56
Find \(\mathbf{r}(t)\) for the given conditions. $$ \mathbf{r}^{\prime}(t)=\frac{1}{1+t^{2}} \mathbf{i}+\frac{1}{t^{2}} \mathbf{j}+\frac{1}{t} \mathbf{k}, \quad \mathbf{r}(1)=2 \mathbf{i} $$
Chapter 10: Problem 56
Find \(\mathbf{r}(t)\) for the given conditions. $$ \mathbf{r}^{\prime}(t)=\frac{1}{1+t^{2}} \mathbf{i}+\frac{1}{t^{2}} \mathbf{j}+\frac{1}{t} \mathbf{k}, \quad \mathbf{r}(1)=2 \mathbf{i} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeThe graph of the vector-valued function \(\mathbf{r}(t)\) and a tangent vector to the graph at \(t=t_{0}\) are given. (a) Find a set of parametric equations for the tangent line to the graph at \(t=t_{0}\) (b) Use the equations for the tangent line to approximate \(\mathbf{r}\left(t_{0}+\mathbf{0 . 1}\right)\) $$ \mathbf{r}(t)=\left\langle t, \sqrt{25-t^{2}}, \sqrt{25-t^{2}}\right\rangle, \quad t_{0}=3 $$
Find (a) \(\quad D_{t}[\mathbf{r}(t) \cdot \mathbf{u}(t)] \quad\) and (b) \(D_{t}[\mathbf{r}(t) \times \mathbf{u}(t)]\) by differentiating the product, then applying the properties of Theorem 10.2. $$ \mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}+t \mathbf{k}, \quad \mathbf{u}(t)=\mathbf{j}+t \mathbf{k} $$
Find the open interval(s) on which the curve given by the vector-valued function is smooth. $$ \mathbf{r}(\theta)=(\theta-2 \sin \theta) \mathbf{i}+(1-2 \cos \theta) \mathbf{j} $$
Use the given acceleration function to find the velocity and position vectors. Then find the position at time \(t=2\) $$ \begin{array}{l} \mathbf{a}(t)=-\cos t \mathbf{i}-\sin t \mathbf{j} \\ \mathbf{v}(0)=\mathbf{j}+\mathbf{k}, \quad \mathbf{r}(0)=\mathbf{i} \end{array} $$
The position vector \(r\) describes the path of an object moving in the \(x y\) -plane. Sketch a graph of the path and sketch the velocity and acceleration vectors at the given point. $$ \mathbf{r}(t)=t^{2} \mathbf{i}+t^{3} \mathbf{j},(1,1) $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.