Chapter 10: Problem 54
Evaluate the limit. $$ \lim _{t \rightarrow 1}\left(\sqrt{t} \mathbf{i}+\frac{\ln t}{t^{2}-1} \mathbf{j}+2 t^{2} \mathbf{k}\right) $$
Chapter 10: Problem 54
Evaluate the limit. $$ \lim _{t \rightarrow 1}\left(\sqrt{t} \mathbf{i}+\frac{\ln t}{t^{2}-1} \mathbf{j}+2 t^{2} \mathbf{k}\right) $$
All the tools & learning materials you need for study success - in one app.
Get started for freeFind \((a) r^{\prime \prime}(t)\) and \((b) r^{\prime}(t) \cdot r^{\prime \prime}(t)\). $$ \mathbf{r}(t)=\frac{1}{2} t^{2} \mathbf{i}-t \mathbf{j}+\frac{1}{6} t^{3} \mathbf{k} $$
The position vector \(r\) describes the path of an object moving in space. Find the velocity, speed, and acceleration of the object. $$ \mathbf{r}(t)=3 t \mathbf{i}+t \mathbf{j}+\frac{1}{4} t^{2} \mathbf{k} $$
Use the given acceleration function to find the velocity and position vectors. Then find the position at time \(t=2\) $$ \begin{array}{l} \mathbf{a}(t)=-\cos t \mathbf{i}-\sin t \mathbf{j} \\ \mathbf{v}(0)=\mathbf{j}+\mathbf{k}, \quad \mathbf{r}(0)=\mathbf{i} \end{array} $$
The position vector \(r\) describes the path of an object moving in the \(x y\) -plane. Sketch a graph of the path and sketch the velocity and acceleration vectors at the given point. $$ \mathbf{r}(t)=t^{2} \mathbf{i}+t^{3} \mathbf{j},(1,1) $$
The position vector \(r\) describes the path of an object moving in space. Find the velocity, speed, and acceleration of the object. $$ \mathbf{r}(t)=t \mathbf{i}+(2 t-5) \mathbf{j}+3 t \mathbf{k} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.