Chapter 10: Problem 45
Find the indefinite integral. $$ \int\left(\frac{1}{t} \mathbf{i}+\mathbf{j}-t^{3 / 2} \mathbf{k}\right) d t $$
Chapter 10: Problem 45
Find the indefinite integral. $$ \int\left(\frac{1}{t} \mathbf{i}+\mathbf{j}-t^{3 / 2} \mathbf{k}\right) d t $$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises 59-66, prove the property. In each case, assume that \(\mathbf{r}, \mathbf{u},\) and \(\mathbf{v}\) are differentiable vector-valued functions of \(t,\) \(f\) is a differentiable real-valued function of \(t,\) and \(c\) is a scalar. $$ D_{t}[c \mathbf{r}(t)]=c \mathbf{r}^{\prime}(t) $$
The position vector \(r\) describes the path of an object moving in space. Find the velocity, speed, and acceleration of the object. $$ \mathbf{r}(t)=t \mathbf{i}+(2 t-5) \mathbf{j}+3 t \mathbf{k} $$
Use the model for projectile motion, assuming there is no air resistance. Determine the maximum height and range of a projectile fired at a height of 3 feet above the ground with an initial velocity of 900 feet per second and at an angle of \(45^{\circ}\) above the horizontal.
What is known about the speed of an object if the angle between the velocity and acceleration vectors is (a) acute and (b) obtuse?
Evaluate the definite integral. $$ \int_{0}^{\pi / 4}[(\sec t \tan t) \mathbf{i}+(\tan t) \mathbf{j}+(2 \sin t \cos t) \mathbf{k}] d t $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.