Chapter 10: Problem 44
Use a graphing utility to graph the function. In the same viewing window, graph the circle of curvature to the graph at the given value of \(x\). $$ y=\ln x, \quad x=1 $$
Chapter 10: Problem 44
Use a graphing utility to graph the function. In the same viewing window, graph the circle of curvature to the graph at the given value of \(x\). $$ y=\ln x, \quad x=1 $$
All the tools & learning materials you need for study success - in one app.
Get started for freeFind \((a) r^{\prime \prime}(t)\) and \((b) r^{\prime}(t) \cdot r^{\prime \prime}(t)\). $$ \mathbf{r}(t)=8 \cos t \mathbf{i}+3 \sin t \mathbf{j} $$
Use the given acceleration function to find the velocity and position vectors. Then find the position at time \(t=2\) $$ \begin{array}{l} \mathbf{a}(t)=-\cos t \mathbf{i}-\sin t \mathbf{j} \\ \mathbf{v}(0)=\mathbf{j}+\mathbf{k}, \quad \mathbf{r}(0)=\mathbf{i} \end{array} $$
Find \((a) r^{\prime \prime}(t)\) and \((b) r^{\prime}(t) \cdot r^{\prime \prime}(t)\). $$ \mathbf{r}(t)=\left\langle e^{-t}, t^{2}, \tan t\right\rangle $$
The position vector \(r\) describes the path of an object moving in space. Find the velocity, speed, and acceleration of the object. $$ \mathbf{r}(t)=t \mathbf{i}+t \mathbf{j}+\sqrt{9-t^{2}} \mathbf{k} $$
Consider the motion of a point (or particle) on the circumference of a rolling circle. As the circle rolls, it generates the cycloid \(\mathbf{r}(t)=b(\omega t-\sin \omega t) \mathbf{i}+b(1-\cos \omega t) \mathbf{j}\) where \(\omega\) is the constant angular velocity of the circle and \(b\) is the radius of the circle. Find the maximum speed of a point on the circumference of an automobile tire of radius 1 foot when the automobile is traveling at 55 miles per hour. Compare this speed with the speed of the automobile.
What do you think about this solution?
We value your feedback to improve our textbook solutions.