Chapter 10: Problem 44
Find the indefinite integral. $$ \int\left(4 t^{3} \mathbf{i}+6 t \mathbf{j}-4 \sqrt{t} \mathbf{k}\right) d t $$
Chapter 10: Problem 44
Find the indefinite integral. $$ \int\left(4 t^{3} \mathbf{i}+6 t \mathbf{j}-4 \sqrt{t} \mathbf{k}\right) d t $$
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the definite integral. $$ \int_{0}^{\pi / 2}[(a \cos t) \mathbf{i}+(a \sin t) \mathbf{j}+\mathbf{k}] d t $$
Find the tangential and normal components of acceleration for a projectile fired at an angle \(\theta\) with the horizontal at an initial speed of \(v_{0}\). What are the components when the projectile is at its maximum height?
Use the model for projectile motion, assuming there is no air resistance. \([a(t)=-9.8\) meters per second per second \(]\) A projectile is fired from ground level at an angle of \(8^{\circ}\) with the horizontal. The projectile is to have a range of 50 meters. Find the minimum velocity necessary.
Consider a particle moving on a circular path of radius \(b\) described by $$ \begin{aligned} &\mathbf{r}(t)=b \cos \omega t \mathbf{i}+b \sin \omega t \mathbf{j}\\\ &\text { where } \omega=d \theta / d t \text { is the constant angular velocity. } \end{aligned} $$ $$ \text { Show that the magnitude of the acceleration vector is } b \omega^{2} \text { . } $$
In Exercises 35 and \(36,\) use the properties of the derivative to find the following. (a) \(\mathbf{r}^{\prime}(t)\) (b) \(\mathbf{r}^{\prime \prime}(t)\) (c) \(D_{t}[\mathbf{r}(t) \cdot \mathbf{u}(t)]\) (d) \(D_{t}[3 \mathbf{r}(t)-\mathbf{u}(t)]\) (e) \(D_{t}[\mathbf{r}(t) \times \mathbf{u}(t)]\) (f) \(D_{t}[\|\mathbf{r}(t)\|], \quad t>0\) $$ \mathbf{r}(t)=t \mathbf{i}+3 t \mathbf{j}+t^{2} \mathbf{k}, \quad \mathbf{u}(t)=4 t \mathbf{i}+t^{2} \mathbf{j}+t^{3} \mathbf{k} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.