Chapter 10: Problem 43
In Exercises \(43-48,\) find the indefinite integral. $$ \int(2 t \mathbf{i}+\mathbf{j}+\mathbf{k}) d t $$
Chapter 10: Problem 43
In Exercises \(43-48,\) find the indefinite integral. $$ \int(2 t \mathbf{i}+\mathbf{j}+\mathbf{k}) d t $$
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the vectors \(\mathrm{T}\) and \(\mathrm{N},\) and the unit binormal vector \(\mathbf{B}=\mathbf{T} \times \mathbf{N},\) for the vector-valued function \(\mathbf{r}(t)\) at the given value of \(t\). $$ \begin{array}{l} \mathbf{r}(t)=t \mathbf{i}+t^{2} \mathbf{j}+\frac{t^{3}}{3} \mathbf{k} \\ t_{0}=1 \end{array} $$
Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. Prove that the vector \(\mathbf{T}^{\prime}(t)\) is \(\mathbf{0}\) for an object moving in a straight line.
The position vector \(r\) describes the path of an object moving in space. Find the velocity, speed, and acceleration of the object. $$ \mathbf{r}(t)=4 t \mathbf{i}+4 t \mathbf{j}+2 t \mathbf{k} $$
Find the open interval(s) on which the curve given by the vector-valued function is smooth. $$ \mathbf{r}(t)=e^{t} \mathbf{i}-e^{-t} \mathbf{j}+3 t \mathbf{k} $$
The position vector \(r\) describes the path of an object moving in the \(x y\) -plane. Sketch a graph of the path and sketch the velocity and acceleration vectors at the given point. $$ \mathbf{r}(t)=3 \cos t \mathbf{i}+2 \sin t \mathbf{j},(3,0) $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.