Chapter 10: Problem 42
Use the definition of the derivative to find \(\mathbf{r}^{\prime}(t)\). $$ \mathbf{r}(t)=\langle 0, \sin t, 4 t\rangle $$
Chapter 10: Problem 42
Use the definition of the derivative to find \(\mathbf{r}^{\prime}(t)\). $$ \mathbf{r}(t)=\langle 0, \sin t, 4 t\rangle $$
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. A particle moves along a path modeled by \(\mathbf{r}(t)=\cosh (b t) \mathbf{i}+\sinh (b t) \mathbf{j}\) where \(b\) is a positive constant. (a) Show that the path of the particle is a hyperbola. (b) Show that \(\mathbf{a}(t)=b^{2} \mathbf{r}(t)\)
The position vector \(r\) describes the path of an object moving in space. Find the velocity, speed, and acceleration of the object. $$ \mathbf{r}(t)=\langle 4 t, 3 \cos t, 3 \sin t\rangle $$
Evaluate the definite integral. $$ \int_{0}^{\pi / 2}[(a \cos t) \mathbf{i}+(a \sin t) \mathbf{j}+\mathbf{k}] d t $$
The position vector \(r\) describes the path of an object moving in the \(x y\) -plane. Sketch a graph of the path and sketch the velocity and acceleration vectors at the given point. $$ \mathbf{r}(t)=3 \cos t \mathbf{i}+2 \sin t \mathbf{j},(3,0) $$
In Exercises 35 and \(36,\) use the properties of the derivative to find the following. (a) \(\mathbf{r}^{\prime}(t)\) (b) \(\mathbf{r}^{\prime \prime}(t)\) (c) \(D_{t}[\mathbf{r}(t) \cdot \mathbf{u}(t)]\) (d) \(D_{t}[3 \mathbf{r}(t)-\mathbf{u}(t)]\) (e) \(D_{t}[\mathbf{r}(t) \times \mathbf{u}(t)]\) (f) \(D_{t}[\|\mathbf{r}(t)\|], \quad t>0\) $$ \mathbf{r}(t)=t \mathbf{i}+3 t \mathbf{j}+t^{2} \mathbf{k}, \quad \mathbf{u}(t)=4 t \mathbf{i}+t^{2} \mathbf{j}+t^{3} \mathbf{k} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.