Chapter 10: Problem 42
Consider an object moving according to the position function \(\mathbf{r}(t)=a \cos \omega t \mathbf{i}+a \sin \omega t \mathbf{j}\) If the angular velocity \(\omega\) is halved, by what factor is \(a_{\mathrm{N}}\) changed?
Chapter 10: Problem 42
Consider an object moving according to the position function \(\mathbf{r}(t)=a \cos \omega t \mathbf{i}+a \sin \omega t \mathbf{j}\) If the angular velocity \(\omega\) is halved, by what factor is \(a_{\mathrm{N}}\) changed?
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises 39 and \(40,\) find the angle \(\theta\) between \(r(t)\) and \(r^{\prime}(t)\) as a function of \(t .\) Use a graphing utility to graph \(\theta(t) .\) Use the graph to find any extrema of the function. Find any values of \(t\) at which the vectors are orthogonal. $$ \mathbf{r}(t)=3 \sin t \mathbf{i}+4 \cos t \mathbf{j} $$
The position vector \(r\) describes the path of an object moving in space. Find the velocity, speed, and acceleration of the object. $$ \mathbf{r}(t)=t \mathbf{i}+(2 t-5) \mathbf{j}+3 t \mathbf{k} $$
Find the open interval(s) on which the curve given by the vector-valued function is smooth. $$ \mathbf{r}(t)=\frac{1}{t-1} \mathbf{i}+3 t \mathbf{j} $$
Use the model for projectile motion, assuming there is no air resistance. Use a graphing utility to graph the paths of a projectile for the given values of \(\theta\) and \(v_{0} .\) For each case, use the graph to approximate the maximum height and range of the projectile. (Assume that the projectile is launched from ground level.) (a) \(\theta=10^{\circ}, v_{0}=66 \mathrm{ft} / \mathrm{sec}\) (b) \(\theta=10^{\circ}, v_{0}=146 \mathrm{ft} / \mathrm{sec}\) (c) \(\theta=45^{\circ}, v_{0}=66 \mathrm{ft} / \mathrm{sec}\) (d) \(\theta=45^{\circ}, v_{0}=146 \mathrm{ft} / \mathrm{sec}\) (e) \(\theta=60^{\circ}, v_{0}=66 \mathrm{ft} / \mathrm{sec}\) (f) \(\theta=60^{\circ}, v_{0}=146 \mathrm{ft} / \mathrm{sec}\)
Prove the property. In each case, assume that \(\mathbf{r}, \mathbf{u},\) and \(\mathbf{v}\) are differentiable vector-valued functions of \(t,\) \(f\) is a differentiable real-valued function of \(t,\) and \(c\) is a scalar. If \(\mathbf{r}(t) \cdot \mathbf{r}(t)\) is a constant, then \(\mathbf{r}(t) \cdot \mathbf{r}^{\prime}(t)=0\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.