Chapter 10: Problem 4
Find the unit tangent vector to the curve at the specified value of the parameter. $$ \mathbf{r}(t)=6 \cos t \mathbf{i}+2 \sin t \mathbf{j}, \quad t=\frac{\pi}{3} $$
Chapter 10: Problem 4
Find the unit tangent vector to the curve at the specified value of the parameter. $$ \mathbf{r}(t)=6 \cos t \mathbf{i}+2 \sin t \mathbf{j}, \quad t=\frac{\pi}{3} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the open interval(s) on which the curve given by the vector-valued function is smooth. $$ \mathbf{r}(\theta)=(\theta+\sin \theta) \mathbf{i}+(1-\cos \theta) \mathbf{j} $$
True or False? In Exercises 67-70, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. If a particle moves along a sphere centered at the origin, then its derivative vector is always tangent to the sphere.
A projectile is launched with an initial velocity of 100 feet per second at a height of 5 feet and at an angle of \(30^{\circ}\) with the horizontal. (a) Determine the vector-valued function for the path of the projectile. (b) Use a graphing utility to graph the path and approximate the maximum height and range of the projectile. (c) Find \(\mathbf{v}(t),\|\mathbf{v}(t)\|,\) and \(\mathbf{a}(t)\) (d) Use a graphing utility to complete the table. $$ \begin{array}{|l|l|l|l|l|l|l|} \hline \boldsymbol{t} & 0.5 & 1.0 & 1.5 & 2.0 & 2.5 & 3.0 \\ \hline \text { Speed } & & & & & & \\ \hline \end{array} $$ (e) Use a graphing utility to graph the scalar functions \(a_{\mathbf{T}}\) and \(a_{\mathrm{N}} .\) How is the speed of the projectile changing when \(a_{\mathrm{T}}\) and \(a_{\mathbf{N}}\) have opposite signs?
Find \((a) r^{\prime \prime}(t)\) and \((b) r^{\prime}(t) \cdot r^{\prime \prime}(t)\). $$ \mathbf{r}(t)=\left\langle e^{-t}, t^{2}, \tan t\right\rangle $$
Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. If a car's speedometer is constant, then the car cannot be accelerating.
What do you think about this solution?
We value your feedback to improve our textbook solutions.