Chapter 10: Problem 39
Consider the motion of a point (or particle) on the circumference of a rolling circle. As the circle rolls, it generates the cycloid \(\mathbf{r}(t)=b(\omega t-\sin \omega t) \mathbf{i}+b(1-\cos \omega t) \mathbf{j}\) where \(\omega\) is the constant angular velocity of the circle and \(b\) is the radius of the circle. Find the velocity and acceleration vectors of the particle. Use the results to determine the times at which the speed of the particle will be (a) zero and (b) maximized.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.