Chapter 10: Problem 39
Consider an object moving according to the position function \(\mathbf{r}(t)=a \cos \omega t \mathbf{i}+a \sin \omega t \mathbf{j}\) Find \(\mathbf{T}(t), \mathbf{N}(t), a_{\mathbf{T}},\) and \(a_{\mathbf{N}}\)
Chapter 10: Problem 39
Consider an object moving according to the position function \(\mathbf{r}(t)=a \cos \omega t \mathbf{i}+a \sin \omega t \mathbf{j}\) Find \(\mathbf{T}(t), \mathbf{N}(t), a_{\mathbf{T}},\) and \(a_{\mathbf{N}}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFind \((a) r^{\prime \prime}(t)\) and \((b) r^{\prime}(t) \cdot r^{\prime \prime}(t)\). $$ \mathbf{r}(t)=\frac{1}{2} t^{2} \mathbf{i}-t \mathbf{j}+\frac{1}{6} t^{3} \mathbf{k} $$
Find \(\mathbf{r}(t)\) for the given conditions. $$ \mathbf{r}^{\prime}(t)=\frac{1}{1+t^{2}} \mathbf{i}+\frac{1}{t^{2}} \mathbf{j}+\frac{1}{t} \mathbf{k}, \quad \mathbf{r}(1)=2 \mathbf{i} $$
The position vector \(r\) describes the path of an object moving in space. Find the velocity, speed, and acceleration of the object. $$ \mathbf{r}(t)=t \mathbf{i}+t \mathbf{j}+\sqrt{9-t^{2}} \mathbf{k} $$
The position vector \(r\) describes the path of an object moving in space. Find the velocity, speed, and acceleration of the object. $$ \mathbf{r}(t)=t^{2} \mathbf{i}+t \mathbf{j}+2 t^{3 / 2} \mathbf{k} $$
Find \(\mathbf{r}(t)\) for the given conditions. $$ \mathbf{r}^{\prime \prime}(t)=-4 \cos t \mathbf{j}-3 \sin t \mathbf{k}, \quad \mathbf{r}^{\prime}(0)=3 \mathbf{k}, \quad \mathbf{r}(0)=4 \mathbf{j} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.