Chapter 10: Problem 37
Find the curvature and radius of curvature of the plane curve at the given value of \(x\). $$ y=3 x-2, \quad x=a $$
Chapter 10: Problem 37
Find the curvature and radius of curvature of the plane curve at the given value of \(x\). $$ y=3 x-2, \quad x=a $$
All the tools & learning materials you need for study success - in one app.
Get started for freeThe graph of the vector-valued function \(\mathbf{r}(t)\) and a tangent vector to the graph at \(t=t_{0}\) are given. (a) Find a set of parametric equations for the tangent line to the graph at \(t=t_{0}\) (b) Use the equations for the tangent line to approximate \(\mathbf{r}\left(t_{0}+\mathbf{0 . 1}\right)\) $$ \mathbf{r}(t)=\left\langle t, \sqrt{25-t^{2}}, \sqrt{25-t^{2}}\right\rangle, \quad t_{0}=3 $$
Evaluate the definite integral. $$ \int_{0}^{\pi / 2}[(a \cos t) \mathbf{i}+(a \sin t) \mathbf{j}+\mathbf{k}] d t $$
Find \(\mathbf{r}(t)\) for the given conditions. $$ \mathbf{r}^{\prime}(t)=t e^{-t^{2}} \mathbf{i}-e^{-t} \mathbf{j}+\mathbf{k}, \quad \mathbf{r}(0)=\frac{1}{2} \mathbf{i}-\mathbf{j}+\mathbf{k} $$
Use the model for projectile motion, assuming there is no air resistance. Find the angle at which an object must be thrown to obtain (a) the maximum range and (b) the maximum height.
Find \(\mathbf{r}(t)\) for the given conditions. $$ \mathbf{r}^{\prime}(t)=\frac{1}{1+t^{2}} \mathbf{i}+\frac{1}{t^{2}} \mathbf{j}+\frac{1}{t} \mathbf{k}, \quad \mathbf{r}(1)=2 \mathbf{i} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.