Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use the model for projectile motion, assuming there is no air resistance. Find the angle at which an object must be thrown to obtain (a) the maximum range and (b) the maximum height.

Short Answer

Expert verified
The angle to obtain maximum range is 45 degrees, while the angle to get the maximum height is 90 degrees.

Step by step solution

01

Identify the model for maximum range

The formula to find the maximum range (R) in the case of projectile motion is given by \[ R = \frac{v^2}{g} \sin 2\theta \] where v is the initial velocity of the object, g is the acceleration because of gravity, and θ is the angle. This range will be maximum when the value of \(\sin 2\theta\) is maximum, which is 1. The maximum value of the sine function occurs at an angle of \(\frac{\pi}{2}\) radians, or 90 degrees. So, set \(2\theta = \frac{\pi}{2}\) and solve for \(\theta\).
02

Calculate angle for maximum range

For maximum range, \[2\theta = \frac{\pi}{2}\] Solving for \(\theta\) we get: \[\theta = \frac{\pi}{4}\] or 45 degrees.
03

Identify the model for maximum height

The equation to compute the maximum height (H) during projectile motion is \[ H = \frac{v^2 \sin^2 \theta}{2g} \] In this case, height will be maximum when the value of \(\sin^2 \theta\) is maximum, which is again 1. The maximum value of the sine function occurs at an angle of 90 degrees. So, the angle for maximum height is 90 degrees.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The graph of the vector-valued function \(\mathbf{r}(t)\) and a tangent vector to the graph at \(t=t_{0}\) are given. (a) Find a set of parametric equations for the tangent line to the graph at \(t=t_{0}\) (b) Use the equations for the tangent line to approximate \(\mathbf{r}\left(t_{0}+\mathbf{0 . 1}\right)\) $$ \mathbf{r}(t)=\left\langle t,-t^{2}, \frac{1}{4} t^{3}\right\rangle, \quad t_{0}=1 $$

Find \(\mathbf{r}(t)\) for the given conditions. $$ \mathbf{r}^{\prime \prime}(t)=-4 \cos t \mathbf{j}-3 \sin t \mathbf{k}, \quad \mathbf{r}^{\prime}(0)=3 \mathbf{k}, \quad \mathbf{r}(0)=4 \mathbf{j} $$

Use the model for projectile motion, assuming there is no air resistance. A bale ejector consists of two variable-speed belts at the end of a baler. Its purpose is to toss bales into a trailing wagon. In loading the back of a wagon, a bale must be thrown to a position 8 feet above and 16 feet behind the ejector. (a) Find the minimum initial speed of the bale and the corresponding angle at which it must be ejected from the baler. (b) The ejector has a fixed angle of \(45^{\circ} .\) Find the initial speed required for a bale to reach its target.

In Exercises 39 and \(40,\) find the angle \(\theta\) between \(r(t)\) and \(r^{\prime}(t)\) as a function of \(t .\) Use a graphing utility to graph \(\theta(t) .\) Use the graph to find any extrema of the function. Find any values of \(t\) at which the vectors are orthogonal. $$ \mathbf{r}(t)=3 \sin t \mathbf{i}+4 \cos t \mathbf{j} $$

In Exercises 59-66, prove the property. In each case, assume that \(\mathbf{r}, \mathbf{u},\) and \(\mathbf{v}\) are differentiable vector-valued functions of \(t,\) \(f\) is a differentiable real-valued function of \(t,\) and \(c\) is a scalar. $$ D_{t}[c \mathbf{r}(t)]=c \mathbf{r}^{\prime}(t) $$

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free