Chapter 10: Problem 36
Use the model for projectile motion, assuming there is no air resistance. Find the angle at which an object must be thrown to obtain (a) the maximum range and (b) the maximum height.
Chapter 10: Problem 36
Use the model for projectile motion, assuming there is no air resistance. Find the angle at which an object must be thrown to obtain (a) the maximum range and (b) the maximum height.
All the tools & learning materials you need for study success - in one app.
Get started for freeThe graph of the vector-valued function \(\mathbf{r}(t)\) and a tangent vector to the graph at \(t=t_{0}\) are given. (a) Find a set of parametric equations for the tangent line to the graph at \(t=t_{0}\) (b) Use the equations for the tangent line to approximate \(\mathbf{r}\left(t_{0}+\mathbf{0 . 1}\right)\) $$ \mathbf{r}(t)=\left\langle t,-t^{2}, \frac{1}{4} t^{3}\right\rangle, \quad t_{0}=1 $$
Find \(\mathbf{r}(t)\) for the given conditions. $$ \mathbf{r}^{\prime \prime}(t)=-4 \cos t \mathbf{j}-3 \sin t \mathbf{k}, \quad \mathbf{r}^{\prime}(0)=3 \mathbf{k}, \quad \mathbf{r}(0)=4 \mathbf{j} $$
Use the model for projectile motion, assuming there is no air resistance. A bale ejector consists of two variable-speed belts at the end of a baler. Its purpose is to toss bales into a trailing wagon. In loading the back of a wagon, a bale must be thrown to a position 8 feet above and 16 feet behind the ejector. (a) Find the minimum initial speed of the bale and the corresponding angle at which it must be ejected from the baler. (b) The ejector has a fixed angle of \(45^{\circ} .\) Find the initial speed required for a bale to reach its target.
In Exercises 39 and \(40,\) find the angle \(\theta\) between \(r(t)\) and \(r^{\prime}(t)\) as a function of \(t .\) Use a graphing utility to graph \(\theta(t) .\) Use the graph to find any extrema of the function. Find any values of \(t\) at which the vectors are orthogonal. $$ \mathbf{r}(t)=3 \sin t \mathbf{i}+4 \cos t \mathbf{j} $$
In Exercises 59-66, prove the property. In each case, assume that \(\mathbf{r}, \mathbf{u},\) and \(\mathbf{v}\) are differentiable vector-valued functions of \(t,\) \(f\) is a differentiable real-valued function of \(t,\) and \(c\) is a scalar. $$ D_{t}[c \mathbf{r}(t)]=c \mathbf{r}^{\prime}(t) $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.