Chapter 10: Problem 36
Find \(\mathbf{T}(t), \mathbf{N}(t), a_{\mathrm{T}},\) and \(a_{\mathrm{N}}\) at the given time \(t\) for the plane curve \(\mathbf{r}(t)\) $$ \mathbf{r}(t)=a \cos \omega t \mathbf{i}+b \sin \omega t \mathbf{j}, \quad t=0 $$
Chapter 10: Problem 36
Find \(\mathbf{T}(t), \mathbf{N}(t), a_{\mathrm{T}},\) and \(a_{\mathrm{N}}\) at the given time \(t\) for the plane curve \(\mathbf{r}(t)\) $$ \mathbf{r}(t)=a \cos \omega t \mathbf{i}+b \sin \omega t \mathbf{j}, \quad t=0 $$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises 39 and \(40,\) find the angle \(\theta\) between \(r(t)\) and \(r^{\prime}(t)\) as a function of \(t .\) Use a graphing utility to graph \(\theta(t) .\) Use the graph to find any extrema of the function. Find any values of \(t\) at which the vectors are orthogonal. $$ \mathbf{r}(t)=3 \sin t \mathbf{i}+4 \cos t \mathbf{j} $$
Use the model for projectile motion, assuming there is no air resistance. Determine the maximum height and range of a projectile fired at a height of 3 feet above the ground with an initial velocity of 900 feet per second and at an angle of \(45^{\circ}\) above the horizontal.
In Exercises \(49-52,\) evaluate the definite integral. $$ \int_{0}^{1}(8 t \mathbf{i}+t \mathbf{j}-\mathbf{k}) d t $$
Prove the property. In each case, assume that \(\mathbf{r}, \mathbf{u},\) and \(\mathbf{v}\) are differentiable vector-valued functions of \(t,\) \(f\) is a differentiable real-valued function of \(t,\) and \(c\) is a scalar. $$ \begin{array}{l} D_{t}\\{\mathbf{r}(t) \cdot[\mathbf{u}(t) \times \mathbf{v}(t)]\\}=\mathbf{r}^{\prime}(t) \cdot[\mathbf{u}(t) \times \mathbf{v}(t)]+ \\ \mathbf{r}(t) \cdot\left[\mathbf{u}^{\prime}(t) \times \mathbf{v}(t)\right]+\mathbf{r}(t) \cdot\left[\mathbf{u}(t) \times \mathbf{v}^{\prime}(t)\right] \end{array} $$
Find \(\mathbf{r}(t)\) for the given conditions. $$ \mathbf{r}^{\prime \prime}(t)=-4 \cos t \mathbf{j}-3 \sin t \mathbf{k}, \quad \mathbf{r}^{\prime}(0)=3 \mathbf{k}, \quad \mathbf{r}(0)=4 \mathbf{j} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.