Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the open interval(s) on which the curve given by the vector-valued function is smooth. $$ \mathbf{r}(t)=e^{t} \mathbf{i}-e^{-t} \mathbf{j}+3 t \mathbf{k} $$

Short Answer

Expert verified
The curve given by the vector-valued function \(\mathbf{r}(t)=e^{t} \mathbf{i}-e^{-t} \mathbf{j}+3 t \mathbf{k}\) is smooth for all real numbers.

Step by step solution

01

Differentiating the vector function

The derivative of \(\mathbf{r}(t)\) can be found by differentiating each component of the function separately. The derivative of \(e^{t}\) is \(e^{t}\), the derivative of \(-e^{-t}\) is \(e^{-t}\) and the derivative of \(3t\) is \(3\). Thus, the derivative, \(\mathbf{r}'(t)\), is given by \(\mathbf{r}'(t)=e^{t} \mathbf{i}+e^{-t} \mathbf{j}+3 \mathbf{k}\)
02

Analyzing the continuity of the derivative

The function \(\mathbf{r}'(t)=e^{t} \mathbf{i}+e^{-t} \mathbf{j}+3 \mathbf{k}\) is continuous for all real numbers since the exponential function and the constant function are both continuous for all real numbers. Therefore, the curve is smooth for all real numbers.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Use the definition of the derivative to find \(\mathbf{r}^{\prime}(t)\). $$ \mathbf{r}(t)=\langle 0, \sin t, 4 t\rangle $$

The position vector \(r\) describes the path of an object moving in the \(x y\) -plane. Sketch a graph of the path and sketch the velocity and acceleration vectors at the given point. $$ \mathbf{r}(t)=\langle t-\sin t, 1-\cos t\rangle,(\pi, 2) $$

Consider the motion of a point (or particle) on the circumference of a rolling circle. As the circle rolls, it generates the cycloid \(\mathbf{r}(t)=b(\omega t-\sin \omega t) \mathbf{i}+b(1-\cos \omega t) \mathbf{j}\) where \(\omega\) is the constant angular velocity of the circle and \(b\) is the radius of the circle. Find the maximum speed of a point on the circumference of an automobile tire of radius 1 foot when the automobile is traveling at 55 miles per hour. Compare this speed with the speed of the automobile.

Prove the property. In each case, assume that \(\mathbf{r}, \mathbf{u},\) and \(\mathbf{v}\) are differentiable vector-valued functions of \(t,\) \(f\) is a differentiable real-valued function of \(t,\) and \(c\) is a scalar. $$ D_{t}\left[\mathbf{r}(t) \times \mathbf{r}^{\prime}(t)\right]=\mathbf{r}(t) \times \mathbf{r}^{\prime \prime}(t) $$

Consider a particle moving on a circular path of radius \(b\) described by $$ \begin{aligned} &\mathbf{r}(t)=b \cos \omega t \mathbf{i}+b \sin \omega t \mathbf{j}\\\ &\text { where } \omega=d \theta / d t \text { is the constant angular velocity. } \end{aligned} $$ $$ \text { Find the velocity vector and show that it is orthogonal to } \mathbf{r}(t) $$

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free