Chapter 10: Problem 32
Find the curvature \(K\) of the curve. $$ \mathbf{r}(t)=a \cos \omega t \mathbf{i}+b \sin \omega t \mathbf{j} $$
Chapter 10: Problem 32
Find the curvature \(K\) of the curve. $$ \mathbf{r}(t)=a \cos \omega t \mathbf{i}+b \sin \omega t \mathbf{j} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeThe graph of the vector-valued function \(\mathbf{r}(t)\) and a tangent vector to the graph at \(t=t_{0}\) are given. (a) Find a set of parametric equations for the tangent line to the graph at \(t=t_{0}\) (b) Use the equations for the tangent line to approximate \(\mathbf{r}\left(t_{0}+\mathbf{0 . 1}\right)\) $$ \mathbf{r}(t)=\left\langle t, \sqrt{25-t^{2}}, \sqrt{25-t^{2}}\right\rangle, \quad t_{0}=3 $$
Use the model for projectile motion, assuming there is no air resistance. Eliminate the parameter \(t\) from the position function for the motion of a projectile to show that the rectangular equation is \(y=-\frac{16 \sec ^{2} \theta}{v_{0}^{2}} x^{2}+(\tan \theta) x+h\)
Evaluate the definite integral. $$ \int_{0}^{\pi / 2}[(a \cos t) \mathbf{i}+(a \sin t) \mathbf{j}+\mathbf{k}] d t $$
Find \(\mathbf{r}(t)\) for the given conditions. $$ \mathbf{r}^{\prime \prime}(t)=-4 \cos t \mathbf{j}-3 \sin t \mathbf{k}, \quad \mathbf{r}^{\prime}(0)=3 \mathbf{k}, \quad \mathbf{r}(0)=4 \mathbf{j} $$
Find the indefinite integral. $$ \int\left[(2 t-1) \mathbf{i}+4 t^{3} \mathbf{j}+3 \sqrt{t} \mathbf{k}\right] d t $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.