Chapter 10: Problem 31
Use the model for projectile motion, assuming there is no air resistance. Rogers Centre in Toronto, Ontario has a center field fence that is 10 feet high and 400 feet from home plate. A ball is hit 3 feet above the ground and leaves the bat at a speed of 100 miles per hour. (a) The ball leaves the bat at an angle of \(\theta=\theta_{0}\) with the horizontal. Write the vector-valued function for the path of the ball. (b) Use a graphing utility to graph the vector-valued function for \(\theta_{0}=10^{\circ}, \theta_{0}=15^{\circ}, \theta_{0}=20^{\circ},\) and \(\theta_{0}=25^{\circ} .\) Use the graphs to approximate the minimum angle required for the hit to be a home run. (c) Determine analytically the minimum angle required for the hit to be a home run.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.