Chapter 10: Problem 31
Find the open interval(s) on which the curve given by the vector-valued function is smooth. $$ \mathbf{r}(\theta)=(\theta-2 \sin \theta) \mathbf{i}+(1-2 \cos \theta) \mathbf{j} $$
Chapter 10: Problem 31
Find the open interval(s) on which the curve given by the vector-valued function is smooth. $$ \mathbf{r}(\theta)=(\theta-2 \sin \theta) \mathbf{i}+(1-2 \cos \theta) \mathbf{j} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeUse the model for projectile motion, assuming there is no air resistance. A projectile is fired from ground level at an angle of \(12^{\circ}\) with the horizontal. The projectile is to have a range of 150 feet. Find the minimum initial velocity necessary.
Find the indefinite integral. $$ \int\left[(2 t-1) \mathbf{i}+4 t^{3} \mathbf{j}+3 \sqrt{t} \mathbf{k}\right] d t $$
Consider the motion of a point (or particle) on the circumference of a rolling circle. As the circle rolls, it generates the cycloid \(\mathbf{r}(t)=b(\omega t-\sin \omega t) \mathbf{i}+b(1-\cos \omega t) \mathbf{j}\) where \(\omega\) is the constant angular velocity of the circle and \(b\) is the radius of the circle. Find the velocity and acceleration vectors of the particle. Use the results to determine the times at which the speed of the particle will be (a) zero and (b) maximized.
Consider the motion of a point (or particle) on the circumference of a rolling circle. As the circle rolls, it generates the cycloid \(\mathbf{r}(t)=b(\omega t-\sin \omega t) \mathbf{i}+b(1-\cos \omega t) \mathbf{j}\) where \(\omega\) is the constant angular velocity of the circle and \(b\) is the radius of the circle. Find the maximum speed of a point on the circumference of an automobile tire of radius 1 foot when the automobile is traveling at 55 miles per hour. Compare this speed with the speed of the automobile.
The position vector \(r\) describes the path of an object moving in space. Find the velocity, speed, and acceleration of the object. $$ \mathbf{r}(t)=t^{2} \mathbf{i}+t \mathbf{j}+2 t^{3 / 2} \mathbf{k} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.