Chapter 10: Problem 31
Find \(\mathbf{T}(t), \mathbf{N}(t), a_{\mathrm{T}},\) and \(a_{\mathrm{N}}\) at the given time \(t\) for the plane curve \(\mathbf{r}(t)\) $$ \mathbf{r}(t)=\left(t-t^{3}\right) \mathbf{i}+2 t^{2} \mathbf{j}, \quad t=1 $$
Chapter 10: Problem 31
Find \(\mathbf{T}(t), \mathbf{N}(t), a_{\mathrm{T}},\) and \(a_{\mathrm{N}}\) at the given time \(t\) for the plane curve \(\mathbf{r}(t)\) $$ \mathbf{r}(t)=\left(t-t^{3}\right) \mathbf{i}+2 t^{2} \mathbf{j}, \quad t=1 $$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises 35 and \(36,\) use the properties of the derivative to find the following. (a) \(\mathbf{r}^{\prime}(t)\) (b) \(\mathbf{r}^{\prime \prime}(t)\) (c) \(D_{t}[\mathbf{r}(t) \cdot \mathbf{u}(t)]\) (d) \(D_{t}[3 \mathbf{r}(t)-\mathbf{u}(t)]\) (e) \(D_{t}[\mathbf{r}(t) \times \mathbf{u}(t)]\) (f) \(D_{t}[\|\mathbf{r}(t)\|], \quad t>0\) $$ \mathbf{r}(t)=t \mathbf{i}+3 t \mathbf{j}+t^{2} \mathbf{k}, \quad \mathbf{u}(t)=4 t \mathbf{i}+t^{2} \mathbf{j}+t^{3} \mathbf{k} $$
In Exercises \(27-34,\) find the open interval(s) on which the curve given by the vector-valued function is smooth. $$ \mathbf{r}(t)=t^{2} \mathbf{i}+t^{3} \mathbf{j} $$
The position vector \(r\) describes the path of an object moving in space. Find the velocity, speed, and acceleration of the object. $$ \mathbf{r}(t)=t \mathbf{i}+t^{2} \mathbf{j}+\frac{t^{2}}{2} \mathbf{k} $$
Use the given acceleration function to find the velocity and position vectors. Then find the position at time \(t=2\) $$ \begin{array}{l} \mathbf{a}(t)=\mathbf{i}+\mathbf{j}+\mathbf{k} \\ \mathbf{v}(0)=\mathbf{0}, \quad \mathbf{r}(0)=\mathbf{0} \end{array} $$
Evaluate the definite integral. $$ \int_{0}^{\pi / 2}[(a \cos t) \mathbf{i}+(a \sin t) \mathbf{j}+\mathbf{k}] d t $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.