Chapter 10: Problem 30
Use a computer algebra system to graph the vector-valued function \(\mathbf{r}(t) .\) For each \(\mathbf{u}(t)\) make a conjecture about the transformation (if any) of the graph of \(\mathbf{r}(t) .\) Use a computer algebra system to verify your conjecture. \(\mathbf{r}(t)=t \mathbf{i}+t^{2} \mathbf{j}+\frac{1}{2} t^{3} \mathbf{k}\) (a) \(\mathbf{u}(t)=t \mathbf{i}+\left(t^{2}-2\right) \mathbf{j}+\frac{1}{2} t^{3} \mathbf{k}\) (b) \(\mathbf{u}(t)=t^{2} \mathbf{i}+t \mathbf{j}+\frac{1}{2} t^{3} \mathbf{k}\) (c) \(\mathbf{u}(t)=t \mathbf{i}+t^{2} \mathbf{j}+\left(\frac{1}{2} t^{3}+4\right) \mathbf{k}\) (d) \(\mathbf{u}(t)=t \mathbf{i}+t^{2} \mathbf{j}+\frac{1}{8} t^{3} \mathbf{k}\) (e) \(\mathbf{u}(t)=(-t) \mathbf{i}+(-t)^{2} \mathbf{j}+\frac{1}{2}(-t)^{3} \mathbf{k}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.