Chapter 10: Problem 29
Find the open interval(s) on which the curve given by the vector-valued function is smooth. $$ \mathbf{r}(\theta)=2 \cos ^{3} \theta \mathbf{i}+3 \sin ^{3} \theta \mathbf{j} $$
Chapter 10: Problem 29
Find the open interval(s) on which the curve given by the vector-valued function is smooth. $$ \mathbf{r}(\theta)=2 \cos ^{3} \theta \mathbf{i}+3 \sin ^{3} \theta \mathbf{j} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeThe \(z\) -component of the derivative of the vector-valued function \(\mathbf{u}\) is 0 for \(t\) in the domain of the function. What does this information imply about the graph of \(\mathbf{u}\) ?
Find the open interval(s) on which the curve given by the vector-valued function is smooth. $$ \mathbf{r}(t)=e^{t} \mathbf{i}-e^{-t} \mathbf{j}+3 t \mathbf{k} $$
In Exercises \(27-34,\) find the open interval(s) on which the curve given by the vector-valued function is smooth. $$ \mathbf{r}(t)=t^{2} \mathbf{i}+t^{3} \mathbf{j} $$
The position vector \(r\) describes the path of an object moving in the \(x y\) -plane. Sketch a graph of the path and sketch the velocity and acceleration vectors at the given point. $$ \mathbf{r}(t)=\left\langle e^{-t}, e^{t}\right\rangle,(1,1) $$
The position vector \(r\) describes the path of an object moving in space. Find the velocity, speed, and acceleration of the object. $$ \mathbf{r}(t)=t \mathbf{i}+t \mathbf{j}+\sqrt{9-t^{2}} \mathbf{k} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.