Chapter 10: Problem 29
Find the curvature \(K\) of the curve. $$ \mathbf{r}(t)=4 \cos 2 \pi t \mathbf{i}+4 \sin 2 \pi t \mathbf{j} $$
Chapter 10: Problem 29
Find the curvature \(K\) of the curve. $$ \mathbf{r}(t)=4 \cos 2 \pi t \mathbf{i}+4 \sin 2 \pi t \mathbf{j} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeWhat is known about the speed of an object if the angle between the velocity and acceleration vectors is (a) acute and (b) obtuse?
In Exercises 35 and \(36,\) use the properties of the derivative to find the following. (a) \(\mathbf{r}^{\prime}(t)\) (b) \(\mathbf{r}^{\prime \prime}(t)\) (c) \(D_{t}[\mathbf{r}(t) \cdot \mathbf{u}(t)]\) (d) \(D_{t}[3 \mathbf{r}(t)-\mathbf{u}(t)]\) (e) \(D_{t}[\mathbf{r}(t) \times \mathbf{u}(t)]\) (f) \(D_{t}[\|\mathbf{r}(t)\|], \quad t>0\) $$ \mathbf{r}(t)=t \mathbf{i}+3 t \mathbf{j}+t^{2} \mathbf{k}, \quad \mathbf{u}(t)=4 t \mathbf{i}+t^{2} \mathbf{j}+t^{3} \mathbf{k} $$
Find the angle \(\theta\) between \(r(t)\) and \(r^{\prime}(t)\) as a function of \(t .\) Use a graphing utility to graph \(\theta(t) .\) Use the graph to find any extrema of the function. Find any values of \(t\) at which the vectors are orthogonal. $$ \mathbf{r}(t)=t^{2} \mathbf{i}+t \mathbf{j} $$
Use the given acceleration function to find the velocity and position vectors. Then find the position at time \(t=2\) $$ \begin{array}{l} \mathbf{a}(t)=t \mathbf{j}+t \mathbf{k} \\ \mathbf{v}(1)=5 \mathbf{j}, \quad \mathbf{r}(1)=\mathbf{0} \end{array} $$
Find \(\mathbf{r}(t)\) for the given conditions. $$ \mathbf{r}^{\prime}(t)=t e^{-t^{2}} \mathbf{i}-e^{-t} \mathbf{j}+\mathbf{k}, \quad \mathbf{r}(0)=\frac{1}{2} \mathbf{i}-\mathbf{j}+\mathbf{k} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.