Chapter 10: Problem 27
In Exercises \(27-34,\) find the open interval(s) on which the curve given by the vector-valued function is smooth. $$ \mathbf{r}(t)=t^{2} \mathbf{i}+t^{3} \mathbf{j} $$
Chapter 10: Problem 27
In Exercises \(27-34,\) find the open interval(s) on which the curve given by the vector-valued function is smooth. $$ \mathbf{r}(t)=t^{2} \mathbf{i}+t^{3} \mathbf{j} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. If a car's speedometer is constant, then the car cannot be accelerating.
The position vector \(r\) describes the path of an object moving in the \(x y\) -plane. Sketch a graph of the path and sketch the velocity and acceleration vectors at the given point. $$ \mathbf{r}(t)=(6-t) \mathbf{i}+t \mathbf{j},(3,3) $$
Use the model for projectile motion, assuming there is no air resistance. A projectile is fired from ground level at an angle of \(12^{\circ}\) with the horizontal. The projectile is to have a range of 150 feet. Find the minimum initial velocity necessary.
Consider a particle moving on a circular path of radius \(b\) described by $$ \begin{aligned} &\mathbf{r}(t)=b \cos \omega t \mathbf{i}+b \sin \omega t \mathbf{j}\\\ &\text { where } \omega=d \theta / d t \text { is the constant angular velocity. } \end{aligned} $$ (a) Show that the speed of the particle is \(b \omega\). (b) Use a graphing utility in parametric mode to graph the circle for \(b=6\). Try different values of \(\omega\). Does the graphing utility draw the circle faster for greater values of \(\omega\) ?
Find the angle \(\theta\) between \(r(t)\) and \(r^{\prime}(t)\) as a function of \(t .\) Use a graphing utility to graph \(\theta(t) .\) Use the graph to find any extrema of the function. Find any values of \(t\) at which the vectors are orthogonal. $$ \mathbf{r}(t)=t^{2} \mathbf{i}+t \mathbf{j} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.