Chapter 10: Problem 27
Find the curvature \(K\) of the plane curve at the given value of the parameter. $$ \mathbf{r}(t)=t \mathbf{i}+\cos t \mathbf{j}, \quad t=0 $$
Chapter 10: Problem 27
Find the curvature \(K\) of the plane curve at the given value of the parameter. $$ \mathbf{r}(t)=t \mathbf{i}+\cos t \mathbf{j}, \quad t=0 $$
All the tools & learning materials you need for study success - in one app.
Get started for freeProve the property. In each case, assume that \(\mathbf{r}, \mathbf{u},\) and \(\mathbf{v}\) are differentiable vector-valued functions of \(t,\) \(f\) is a differentiable real-valued function of \(t,\) and \(c\) is a scalar. $$ \begin{array}{l} D_{t}\\{\mathbf{r}(t) \cdot[\mathbf{u}(t) \times \mathbf{v}(t)]\\}=\mathbf{r}^{\prime}(t) \cdot[\mathbf{u}(t) \times \mathbf{v}(t)]+ \\ \mathbf{r}(t) \cdot\left[\mathbf{u}^{\prime}(t) \times \mathbf{v}(t)\right]+\mathbf{r}(t) \cdot\left[\mathbf{u}(t) \times \mathbf{v}^{\prime}(t)\right] \end{array} $$
Find \((a) r^{\prime \prime}(t)\) and \((b) r^{\prime}(t) \cdot r^{\prime \prime}(t)\). $$ \mathbf{r}(t)=t \mathbf{i}+(2 t+3) \mathbf{j}+(3 t-5) \mathbf{k} $$
Find the tangential and normal components of acceleration for a projectile fired at an angle \(\theta\) with the horizontal at an initial speed of \(v_{0}\). What are the components when the projectile is at its maximum height?
The position vector \(r\) describes the path of an object moving in space. Find the velocity, speed, and acceleration of the object. $$ \mathbf{r}(t)=3 t \mathbf{i}+t \mathbf{j}+\frac{1}{4} t^{2} \mathbf{k} $$
True or False? In Exercises 67-70, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. If a particle moves along a sphere centered at the origin, then its derivative vector is always tangent to the sphere.
What do you think about this solution?
We value your feedback to improve our textbook solutions.