Chapter 10: Problem 26
Sketch the curve represented by the vectorvalued function and give the orientation of the curve. \(\mathbf{r}(t)=\langle\cos t+t \sin t, \sin t-t \cos t, t\rangle\)
Chapter 10: Problem 26
Sketch the curve represented by the vectorvalued function and give the orientation of the curve. \(\mathbf{r}(t)=\langle\cos t+t \sin t, \sin t-t \cos t, t\rangle\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the open interval(s) on which the curve given by the vector-valued function is smooth. $$ \mathbf{r}(t)=\frac{2 t}{8+t^{3}} \mathbf{i}+\frac{2 t^{2}}{8+t^{3}} \mathbf{j} $$
Find the indefinite integral. $$ \int\left(\ln t \mathbf{i}+\frac{1}{t} \mathbf{j}+\mathbf{k}\right) d t $$
Find \((a) r^{\prime \prime}(t)\) and \((b) r^{\prime}(t) \cdot r^{\prime \prime}(t)\). $$ \mathbf{r}(t)=t \mathbf{i}+(2 t+3) \mathbf{j}+(3 t-5) \mathbf{k} $$
The position vector \(r\) describes the path of an object moving in the \(x y\) -plane. Sketch a graph of the path and sketch the velocity and acceleration vectors at the given point. $$ \mathbf{r}(t)=(6-t) \mathbf{i}+t \mathbf{j},(3,3) $$
Consider the motion of a point (or particle) on the circumference of a rolling circle. As the circle rolls, it generates the cycloid \(\mathbf{r}(t)=b(\omega t-\sin \omega t) \mathbf{i}+b(1-\cos \omega t) \mathbf{j}\) where \(\omega\) is the constant angular velocity of the circle and \(b\) is the radius of the circle. Find the maximum speed of a point on the circumference of an automobile tire of radius 1 foot when the automobile is traveling at 55 miles per hour. Compare this speed with the speed of the automobile.
What do you think about this solution?
We value your feedback to improve our textbook solutions.